Load Pocket Thresholds

Susan Jacon

Manager Energy Market Mitigation Market Mitigation & Analysis

ICAPWG/MIWG

October 8, 2019

Agenda

- Background
- NYISO's Concerns
- Current Methodology
- Next Steps

Background

Background

- Load Pocket Thresholds (LPTs)
 - Employed to identify economic withholding in NYC, while the load pocket is transmission constrained
 - Limit the ability of NYC generators to submit bids that diverge from their Incremental Energy and Minimum Generation reference levels
 - Tariff defined methodology has not changed in more than 15 years

Concerns about Current Methodology

Concerns - review

Possible Over/Under Mitigation

- Tight LPTs can make it hard for generators to incorporate temporary changes in costs into their bids
- Could lead to over or under mitigation, because they have been based on previous months' data
- Monthly Fuel Adjustment built into LPTs doesn't account for daily changes in fuel prices

Concerns - review

Market power assumptions may need to change

- When is it actually possible to exercise market power?
- For LPTs, expected market power in the coming months is based on a simple average of the # of binding constraints for the prior 12 months.

Concerns - review

Current LPT design may not correspond to presence of market power

- Large one-time swings in natural gas prices and/or LBMPs can skew the 12-month average of gas price adjusted LBMPs.
- Topology changes over the past 15-20 years.
- Assumption that a generator in a narrow load pocket has the potential to exercise market power in both its narrow load pocket and the broad load pockets may need to be updated.

Today's Process

Tariff Defined Calculation

The Tariff-specified methodology (MST 23.3.1.2.2) for setting RTD and DAM LPTs is as follows:

$$Threshold = \frac{2\% * Average \ Price * 8760}{Constrained \ Hours}$$

NYISO MMA Process

- Run the Preliminary Calculation
 - 1st business day following the 4th day of the month
- Further adjust the automated logic results
 - Gas-futures adjustment factor
 - Scaling factor
- Run final calculation
 - Last business day before the 14th of the month
- Further adjust the automated logic results
 - Gas-futures adjustment factor
 - Scaling factor
- LPTs are posted for Market Participants and become effective on the 15th of the month
- Details of the calculation are on the coming slides

LPT Calculation - Details

Average Price

- Pulls DAM and RTD Generator LBMPs for the past 12 months
- Calculates LBMP ratio
 - Time Weighted
 - Load Weighted
- Fuel Adjusted
 - Divides last month's average gas price by the average monthly gas price for each of the prior 12 months' average gas price to determine a fuel adjustment factor

LPT Calculation - Details

Constrained hours

- Pulls all active constraints for the prior 12 months for both the RTM and DAM
- Shadow Price Analysis on all constrained intervals to eliminate intervals with *de minimis* price differences
- For RTD, calculate share of RTD seconds in an hour that were constrained
- For each load pocket, sum the number of constrained hours over the calendar month

LPT Calculation - Details

Thresholds calculated

- Weight Historical Load Pocket LBMP Prices with Corresponding Con Edison Hourly Load Data
- Adjust these Monthly Weighted Average LBMPs with a Monthly Fuel Adjustment Factor
- Use these Fuel-Price Adjusted LBMPs and the 12-month Average of Historical Transmission Constraints to Calculate LPT Thresholds for the month

Further Adjustments

Create a "Gas-Futures" Adjustment Factor

- Balance of Month ("BOM") future natural gas price
- Next Month's Natural Gas Price
- Average Futures Price
 - Average the BOM and Next Month's futures together
- Preliminary Adjustment Factor
 - Divide the Average Futures Price by the Prior Month's Actual Average Spot Fuel Price

Further Adjustments

Create a Scaling Factor

- Removes the preliminary fuel adjustment's inappropriate effects on non-fuel Variable Operating and Maintenance (VOM) Costs
 - Calculate non-fuel component of the historical LBMPs
 - Fuel adjust the non-fuel component of historical LBMPs
 - Subtract the 'fuel adjusted' non-fuel cost from the hourly LBMPs & replace that with the 'non-gas price adjusted' non-fuel cost.
 - Calculate the ratio of 'over-fuel adjusted' LBMPs to the partially fuel adjusted LBMPs
 - Divide the projected fuel adjusted LPTs by this correction factor.

Analysis

- Improving the estimates of upcoming month's transmission constraints/market power
- Improving how we predict the expected load pocket LBMP used in the LPT calculation
- Alternative approach to market power

Next Steps

- Present analysis
- Discuss options
- Solicit Feedback

Feedback?

Email additional feedback to: sjacon@nyiso.com

Questions?

The Mission of the New York Independent System Operator, in collaboration with its stakeholders, is to serve the public interest and provide benefit to consumers by:

- Maintaining and enhancing regional reliability
- Operating open, fair and competitive wholesale electricity markets
- Planning the power system for the future
- Providing factual information to policy makers, stakeholders and investors in the power system

www.nyiso.com

